Tendon & Ligament Support

Clinical Applications

- Promotes the Body’s Processes of Tendon/Ligament Self-Repair*
- Supports Tendon/Ligament Function*
- Protects and Promotes Collagen Biosynthesis*
- Supports Tendon/Ligament Comfort*

Tendon & Ligament Support is an advanced formula designed to bolster tendon/ligament comfort and recovery. Whether repetitive use or something more acute is your challenge, preliminary research suggests that Tendon & Ligament Support can support the stability, health, and proliferation of tendon and ligament cells and thereby promote the body’s ability for self-repair. Let Tendon & Ligament Support help you stay active.*

All Karen Brainard/ Bradenton East Integrative Medicine Formulas Meet or Exceed cGMP Quality Standards

Discussion

It is known that tendons and ligaments have a slower and more limited ability to self-repair than other tissues. However, healthy tendons and ligaments do indeed have an intrinsic capacity for repair, which is controlled by resident fibroblasts and their surrounding extracellular matrix (ECM).[3-5] Fibroblasts (e.g., tenocytes) are responsible for producing the ECM and therefore the proteoglycans (protein/mucopolysaccharide complex) and collagen needed for tissue repair. The key is to stimulate this process. In vitro and in vivo research suggests Tendon & Ligament Support does just that. This proprietary blend of type I collagen and mucopolysaccharides combined with vitamin C supports the structural and functional needs of tendons and ligaments.*

Type I Collagen and Mucopolysaccharides Adult tendons are comprised mainly of type-I collagen molecules that are hierarchically organized into structural units. The molecular structure and organization of tendon and ligament collagen fibrils are key determinants in the ability of these tissues to endure mechanical force and fuel self-repair.[1] While collagen provides much of tendon/ligament structure and strength, mucopolysaccharides are said to provide the “glue” that holds them together and allows them to stretch, flex, bend, and maintain their resilience. Mucopolysaccharides—also known as glycosaminoglycans or GAGs—are a critical component of ECM and are important in maintaining structural integrity, lubrication, and spacing of collagen fibers. Furthermore, mucopolysaccharides have been shown to increase collagen and non-collagenous protein synthesis in cultures of bovine tenocytes and ligament cells.[2]

Vitamin C This vitamin helps maintain tendon/ligament structure and biomechanical properties by stimulating collagen biosynthesis.*[2-5]

In Vitro IL-1beta (interleukin-1beta) is a cytokine associated with adverse tendon/ligament changes. The effect of Tendon & Ligament Support in the presence of IL-1beta was studied in primary human tenocytes. Tenocyte cultures treated with 250, 500, and 1000 μg/ml of Tendon & Ligament Support showed no signs of cytotoxicity or other negative effects on the viability of cells. The major findings were that this formula counteracted the negative effects of IL-1beta by: (1) protecting tenocytes from degenerative morphological changes, cellular degeneration, and apoptosis, (2) reversing the downregulation of collagen type I and beta 1-integrin receptor expression, (3) increasing tenomodulin production, and (4) causing a significant dose- and time-dependent increase in proliferation and viability of tenocytes. These results demonstrated that Tendon & Ligament Support supports tenocyte viability and proliferation and type I collagen synthesis.[1] Furthermore, the treated cells appeared healthy; displayed an abundant and well-organized ECM; and exhibited high levels of euchromatin, indicating that the cells were very active and had a high rate of protein (i.e., collagen) biosynthesis.[1] In another in vitro test, human tenocytes incubated with Tendon & Ligament Support for 10 days showed a strong stimulatory effect on cell proliferation that exceeded the proliferation seen in cells incubated with (IGF-1) insulin-like growth factor 1 (positive control).[9] In addition, cells remained viable and showed large amounts of endoplasmic reticulum, which is needed for synthesis of ECM.*

In Vivo A prospective observational study performed by Nadal et al demonstrated the effects of Tendon & Ligament Support on the health of epicondyles, plantar fascia, Achilles tendons, or supraspinatus tendons. Patients were selected on the basis of clinical assessment and ultrasound results. For three months, all of the patients received 20 to 30 physical therapy sessions and the study group received two caps/d of Tendon & Ligament Support.[9] Comfort, quality of life (SF-36), and physiotherapist assessments were performed before intervention began and also at 30-, 60-, and 90-day intervals during intervention. In every assessment, patients given Tendon & Ligament Support showed numerical or statistically significant improvements after two to three months of supplementation compared to controls.[7] Researchers concluded that supplementing with Tendon & Ligament Support improved comfort level and biomechanical properties without adverse effects.*

Several other human studies using Tendon & Ligament Support have demonstrated its positive effects on tendon comfort and structure.[8-10] For instance, in a randomized placebo-controlled study (n = 60) designed to test the effects of Tendon & Ligament Support versus placebo on Achilles, supraspinatus, lateral epicondyle, and plantar fascia comfort and tendon structure, Binh et al found that subjects taking Tendon & Ligament Support (two caps/day) had significantly greater comfort at 90 days. At the end of the study, ultrasound assessment showed no signs of structural issues in the supplemented group.[8] In a prospective, randomized, controlled trial, 59 subjects were assigned to one of three groups: eccentric training, eccentric training plus Tendon & Ligament Support, or passive stretching plus Tendon & Ligament Support. Compared to physical therapy alone, the researchers found that supplementation with Tendon & Ligament Support provided additional benefits associated with comfort at rest and exercise recovery as well as changes in tendon thickness and vascularization in certain subjects.[9]

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
Vitamin C (ascorbic acid)
TENDOACTIVE® Proprietary Blend
Mucopolysaccharides and Type I Collagen

<table>
<thead>
<tr>
<th>Amount Per Serving</th>
<th>%Daily Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C (ascorbic acid)</td>
<td>60 mg</td>
</tr>
<tr>
<td>TENDOACTIVE® Proprietary Blend Mucopolysaccharides and Type I Collagen</td>
<td>520 mg</td>
</tr>
</tbody>
</table>

**Daily Value not established.

Other Ingredients: HPMC (capsule), microcrystalline cellulose, ascorbyl palmitate, silica, and medium-chain triglyceride oil.

TENDOACTIVE® is a registered trademark licensed by Bioiberica, S.A.

Directions

Take two capsules daily, or as directed by your healthcare practitioner.

Consult your healthcare practitioner prior to use. Individuals taking medication should discuss potential interactions with their healthcare practitioner. Do not use if tamper seal is damaged.

References

Does Not Contain

Wheat, gluten, yeast, soy, dairy products, fish, shellfish, peanuts, tree nuts, egg, ingredients derived from genetically modified organisms (GMOs), artificial colors, artificial sweeteners, or artificial preservatives.

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.